Table of Contents

FOR RESEARCH USE ONLY

Simplified Workflow ... 3
Overview .. 4
 Product Information ... 4
GenTegra DNA 1X Protocols ... 5
 Preparing 1X GenTegra DNA Tubes and Microplates 5
 Applying DNA Samples to Stabilized Storage Containers ... 5
GenTegra DNA 5X Protocol – Adding to Samples 6
Drying and Storing GenTegra .. 7
Drying DNA Using a GVGT2001 FastDryer 7
Multiple Drying and Rehydration of DNA 8
DNA Sample Recovery ... 9
Technical Information ... 10
 Expected Results ... 10
 Storage and Transport .. 10
 Tested Storage Buffers Compatible with GenTegra DNA 10
 Tested Applications Compatible with GenTegra DNA 10
DNA Recovery ... 11
 DNA Quality and Integrity .. 11
QPCR Amplification After DNA Recovery 12
Genotyping DNA Stored in GenTegra 12
Frequently Asked Questions (FAQs) 13-14
Add GenTegra-DNA to DNA Tubes/Wells/Samples

Dry for storage or shipping at ambient temperature

To recover, reconstitute in molecular biology grade water

DNA is ready for use
Overview

GenTegra™-DNA is a novel technology for storage and transport of DNA in ready to use aliquots. GenTegra DNA allows storage of DNA in a water-free environment, which protects samples from hydrolysis, oxidation and microbial growth. Simply add purified DNA, dry, and store at room temperature. When needed, simply rehydrate and the DNA sample is ready for downstream analysis. GenTegra-DNA is well suited for ambient temperature shipping locally, nationally and internationally, tolerating the rigorous United States Military ambient shipping specifications of -80°F (-62°C) to 160°F (71°C). In addition to standard GenTegra tubes and microplates, GenTegra-DNA is available in bulk form for custom applications:

- 1x concentration – For making custom tubes for stabilizing and storing purified samples.
- 5x concentration – For adding directly to liquid samples of purified DNA, followed by gentle mixing and drying.

Product Information

<table>
<thead>
<tr>
<th>GenTegra-DNA Dry Bulk</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalog Number</td>
<td>GTD100-B</td>
</tr>
<tr>
<td>Product form</td>
<td>Dried material in 2 ml vial</td>
</tr>
<tr>
<td>Sample Volume</td>
<td>20-245 µl</td>
</tr>
<tr>
<td>Sample Amount</td>
<td>0.05-25 µg of DNA</td>
</tr>
<tr>
<td>DNA concentration</td>
<td>Any</td>
</tr>
<tr>
<td>Recovery Volume</td>
<td>Equivalent to Sample volume</td>
</tr>
<tr>
<td>1X for 100 custom tubes</td>
<td>Add 1.65 ml molecular biology grade water</td>
</tr>
<tr>
<td>Amount per tube</td>
<td>15 µl per tube</td>
</tr>
<tr>
<td>5X for addition to 100 samples</td>
<td>Add 0.55 ml molecular biology grade water</td>
</tr>
<tr>
<td>Amount per sample</td>
<td>Add 5 µl to each sample</td>
</tr>
<tr>
<td>Drying Method</td>
<td>SpeedVac, Vacuum Desiccator, FastDryer™, Biosafety Hood</td>
</tr>
</tbody>
</table>

Upon arrival, GenTegra-DNA dry Bulk is a plastic like material in the bottom of the vial. In the dry form GenTegra-DNA has a shelf life estimated to be at least three years. When re-hydrated the solution should be stored at 4°C and used within 3 months.
GenTegra DNA 1X Protocols

The 1X concentration liquid can be applied to tubes or microplate wells. After air drying, it forms a GenTegra matrix coating at the bottom, which can then be stored dry until needed. Purified DNA in solution can then be added to these matrix-coated tubes or plates, to be followed by air-drying and storage.

Preparing 1X GenTegra DNA Tubes and Microplates

1. Add 1.65 ml of water to the GenTegra-DNA bulk tube and dissolve with occasional gentle vortexing for 5-10 minutes. If left standing the GenTegra will dissolve in approximately 30 minutes and is ready after gentle vortexing.

2. Aliquot 15 µl of GenTegra-DNA into user-supplied tubes or microplate.

2. Dry by any of these methods:
 - In a SpeedVac at ambient temperature or 30°C till dry
 - In a vacuum desiccator for ~3-4 hours
 - In an GenTegra FastDryer overnight ~16 hours
 - In a Biosafety Hood overnight ~16 hours

If the tubes do not dry overnight, then additional effort should be taken to reduce humidity and drying time to less than 24 hours. Do not use heat to accelerate the drying process. For details on drying GenTegra, see “Drying and Storing GenTegra” on page 7.

Applying DNA Samples to Stabilized Storage Containers

1. Aliquot DNA samples into the prepared GenTegra tubes or microplate. The typical containers used are 0.3 ml, 1.7 ml and 0.5 ml tubes, and 96-well microplates.

2. Mix by pipetting up and down 6 times to solubilize the GenTegra Matrix.

3. Proceed to the protocol “Drying and Storing GenTegra” on page 7. After the samples are dry, they are stable for long term ambient storage.
GenTegra DNA 5X Protocol – Adding to Samples

The 5X concentration liquid is added directly to liquid purified DNA samples. After mixing, the solution can be dried and is stable for long term storage.

1. Add 0.55 ml of water to the GenTegra-DNA Dry Bulk tube and dissolve using gentle mixing for 5-10 minutes.
2. Add 5µl of GenTegra-DNA 5x solution to each isolated DNA sample.
 The DNA sample amounts that may be used:
 - Volume: 20-245 µl
 - Amount: 0.05-25 µg
3. Mix thoroughly and gently to disperse the GenTegra Matrix and avoid foaming
4. Quickly centrifuge to bring the matrix and sample to the tube/well bottom.
5. Dry by any of these methods:
 - In a SpeedVac at ambient temperature or 30°C till dry
 - In a Vacuum desiccator till dry, see below
 - In a GenTegra FastDryer overnight or till dry
 - In a Biosafety Hood overnight or till dry

If the tubes do not dry overnight, then additional effort should be taken to reduce humidity and drying time to less than 24 hours. Do not use heat to accelerate the drying process. After the samples are dry, they are completely stable for long term ambient storage.
Drying and Storing GenTegra

DNA samples are typically dried overnight. After the samples are dry, they are completely stable for long term ambient storage.

- For 1.5 ml screw cap tubes in a FastDryer, the volume must be ≤50 µl.
- Drying times for SpeedVac and biosafety hood vary depending on the sample volume.
- When using a SpeedVac or biosafety hood, ensure that DNA is completely dry prior to storage.
- Use SpeedVac on room temperature setting (no additional heat).
- Drying times for 96-well microplates in a biosafety hood are approximately:
 - ≤50 µl - 24 hr; ≤100 µl - 48hr; ≤250 µl - 72hr

Drying DNA Using a GVT2001 FastDryer

1. Ensure that the FastDryer power cord is plugged in.
2. Open the FastDryer.
3. Ensure that the tube holder is inserted in the FastDryer. The tube holder is removable for cleaning.
4. Place unsealed or uncapped tubes or rack in the tube/rack holder as follows:
 - Place rack of tubes (with caps off) or unsealed microplate on top of the tube holder, or
 - Place up to 48 screw-cap tubes (with caps off) in the holes of the tube holder.
5. Close the FastDryer lid.
6. Press the red ON/OFF switch to turn on the FastDryer. Blue lights will illuminate when the FastDryer is operating.
7. Leave on for approximately 16 hours (or overnight) to dry the samples.
8. When drying is complete, turn off the FastDryer, remove the samples and cap or seal the tubes/plates for storage or transport.
9. Store the samples at room temperature (21–25 °C).
Multiple Drying and Rehydration of DNA

Following recovery, an aliquot of DNA may be removed for use, and the sample dried again. This procedure may be repeated multiple times until a maximum of 75% of the original sample (and thus, GenTegra chemical matrix) is removed. For example, a 200 µl sample is applied to a GenTegra tube, dried and rehydrated. Following rehydration, 50 µl is removed for analysis, leaving 150 µl (75% of the original sample), which is dried again. This process can be repeated until removal of an aliquot for analysis causes the volume of the sample to drop below 50 µl (25% of the original sample), in which case it should be stored according to typical conditions (for example, at -20 °C). These calculations assume that the sample was always rehydrated at the same concentration. This calculation is based on percentage of matrix remaining in the solution and not absolute volume. Thus, a sample starting at a volume of 100 µl could undergo drying and rehydration until the volume drops below 25 µl (25% of the original sample).
DNA Sample Recovery

The recovery volume is the same as the starting volume. Be sure to keep a record of the initial sample volume.

1. Apply a volume of molecular biology grade water equivalent to the input sample volume. For details, see the section “Product Information.” Ensure that the final concentration of DNA is ≤250 ng/µl.
2. Incubate at room temperature (21–25°C) for 15 minutes.
3. Mix to solubilize the DNA.
 - For commonly used tubes, cap the tubes and vortex for 1 minute.
 - For 96-well microplates, pipette up and down 10 times.

Typical recovery volume is 35–250 µl, and concentration is 200ng/L. The DNA is ready for use in downstream applications.

IMPORTANT: Vortexing samples to achieve rehydration is important, primarily because high molecular weight DNA at high loading density (25µg) during the initial stages of rehydration becomes transiently viscous during the initial stages of rehydration. This gel-like phase is very sticky on pipette tips. Vortexing allows mixing and rehydration without contact with additional plastic (pipette) surfaces. Once hydration is complete, the gel-like DNA phase dissipates into a proper DNA solution, which is neither viscous nor sticky.
Technical Information

Expected Results

- Quantitative recovery of DNA
- Quality is comparable to input DNA

Storage and Transport

- Quantitative recovery of DNA
- Quality is comparable to input DNA
 Transport conditions: -80°C to +56°C
 Storage conditions: 15°C to 30°C

Tested Storage Buffers Compatible with GenTegra-DNA

- Qiagen Buffer AE
- TE, pH 7.5 and TE pH 8.0 (10mM Tris and 1 mM EDTA)
- Low EDTA TE, pH 8.0 (10mM Tris and 0.1 mM EDTA)

Tested Applications Compatible with GenTegra DNA

The following applications have been tested to be compatible with DNA recovered from GenTegra DNA tubes:

- Gene Expression Analysis
- Genotyping
- Sequencing
- HLA Typing
DNA Recovery

Figure 1 DNA is quantitatively recovered from GenTegra DNA tubes.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Frozen</th>
<th>Water</th>
<th>TE pH 7.5</th>
<th>TE pH 8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>% CV</td>
<td>8.2</td>
<td>3.2</td>
<td>7.4</td>
<td>4.9</td>
</tr>
</tbody>
</table>

DNA Quality and Integrity

Figure 2 Quality and integrity of DNA stored in GenTegra DNA tubes is identical to DNA stored at -20 °C. DNA was stored for 120 days at room temperature (25 °C) or 76 °C. 120 days of storage at 76 °C is equivalent to 10 years of room temperature storage.
Figure 3 Successful qPCR amplification of DNA stored in GenTegra DNA tubes. Following recovery of DNA after storage at 76 °C for two weeks with GenTegra matrix, no PCR inhibition was observed even when 26% of the reaction volume was made up of DNA. The green box indicates ct value of control DNA stored at -20 °C and 50 ng samples stored at 76 °C in the presence of GenTegra matrix. The blue box indicates shifted Ct values of 50 ng samples after storage at 76 °C without GenTegra-DNA.

Genotyping DNA Stored in GenTegra-DNA

<table>
<thead>
<tr>
<th></th>
<th>Frozen Control (-20°C)</th>
<th>GenTegra-DNA 25°C</th>
<th>GenTegra-DNA 56°C</th>
<th>GenTegra-DNA 76°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNP Call Rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affymetrix 6.0</td>
<td>99.50%</td>
<td>99.40%</td>
<td>99.70%</td>
<td>99.20%</td>
</tr>
<tr>
<td>Infinium IM</td>
<td>99.80%</td>
<td>99.70%</td>
<td>99.80%</td>
<td>99.70%</td>
</tr>
<tr>
<td>Concordance with frozen control</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Affymetrix 6.0</td>
<td>99.80%</td>
<td>99.70%</td>
<td>99.70%</td>
<td>99.70%</td>
</tr>
<tr>
<td>Infinium IM</td>
<td>99.90%</td>
<td>99.90%</td>
<td>99.90%</td>
<td>99.90%</td>
</tr>
</tbody>
</table>

Successful genotyping of DNA stored in GenTegra DNA tubes via Illumina and Affymetrix platforms. Results using Illumina Infinium IM and Affymetrix 6.0 are identical for DNA stored at -20 °C and DNA stored in GenTegra DNA tubes at room temperature.
Frequently Asked Questions (FAQ)

What is GenTegra-DNA? Is GenTegra-DNA composed of a filter, beads or paper?
GenTegra-DNA is not a filter, beads or paper. GenTegra is an inert chemical matrix.

The GenTegra-DNA 0.3 ml Cluster Tubes, 0.5 ml tubes, or 96-well microplates appear to be empty. Where is the GenTegra-DNA and how can I detect it?
The GenTegra matrix is generally supplied as a transparent coating at the bottom of each GenTegra DNA tube or well. To confirm that the kit you received contains the GenTegra matrix, simply rehydrate one tube with 35 µl of molecular biology grade water and take an absorbance reading at 230 nm to detect the GenTegra matrix.

Can samples stored in low-EDTA TE, water or other buffers be applied to GenTegra-DNA tubes?
Yes, refer to “Tested Storage Buffers Compatible with GenTegra-DNA” on page 11 for a list of storage solutions that are compatible with GenTegra DNA tubes.

What is the maximum concentration of DNA that can be applied to GenTegra-DNA tubes?
There is no maximum concentration for application. Note that the maximum concentration for recovery is 200 ng/µl. When applying less than 20 µl of DNA, add water to a final volume of ≥20 µl to ensure complete mixing of the DNA with the GenTegra matrix. Refer to the tables in the section “Product Information” on page 3 for application volume and mass specifications.

Why is there a minimum recovery volume of 35µl?
A minimum 35 µl volume is required to rehydrate DNA from all surfaces of the tube or well.

Why is there a maximum recovery concentration of 200 ng/µl when recovering or concentrating DNA?
Maximum solubility of DNA in water is achieved when the concentration does not exceed 200 ng/µl.
Frequently Asked Questions (FAQ) cont’d

What is the composition of the storage solution after recovery?
After addition of molecular biology grade water, your samples will be in the same buffer they were stored in at the time of application.

Will the GenTegra-DNA affect my DNA quantitation? Do I need to blank the spectrophotometer with the GenTegra-DNA?
The GenTegra matrix absorbs at 230 nm. Thus, it will not interfere with readings at A260 or A280 and blanking with the GenTegra matrix is not required.

How should I store my recovered DNA?
We recommend storing recovered DNA at 4 °C for short-term use and -20°C for long-term storage. Do not store recovered DNA at room temperature.

Can I use the recovered DNA directly for downstream applications?
Purification is not required prior to performing downstream applications. Similar DNA quality is maintained before and after recovery. GenTegra DNA does not remove nucleases or other contaminants present in the original sample. When concentrating DNA, please be aware that contaminants will be concentrated along with the DNA.

Can I use the 5X bulk to make customer tubes?
We recommend using the 1X concentration so a larger surface area at the bottom of the tube is coated with GenTegra-DNA but it is just as acceptable to deposit 5 µl of 5X in the bottom of the tube.

For additional questions, contact GenTegra Technical Support at:

support@GenTegra.com
Correcting 260/230 ratios

The GenTegra-DNA chemistry has an absorbance at 230 nm. This absorbance will cause the 260/230 nm ratio values to be different than will normally be expected. The following chart shows the plot of the sample volume vs. OD reading for the GenTegra-DNA solutions at differing volumes and the table below shows the numerical values.

![Graph showing the relationship between sample volume and OD reading at 230 nm.]

<table>
<thead>
<tr>
<th>µL</th>
<th>OD</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>1.33</td>
</tr>
<tr>
<td>200</td>
<td>1.57</td>
</tr>
<tr>
<td>150</td>
<td>2.07</td>
</tr>
<tr>
<td>100</td>
<td>2.93</td>
</tr>
<tr>
<td>50</td>
<td>4.83</td>
</tr>
<tr>
<td>30</td>
<td>7.30</td>
</tr>
<tr>
<td>20</td>
<td>8.26</td>
</tr>
</tbody>
</table>
With these values it is possible to create a table of correction values that can be applied to the 260/230 ratios determined using a NanoDrop for example. The absorbance ratio is also affected if TE buffer is being used so a second column is given for the correction factor to use if the DNA & GenTegra solution is in TE buffer.

Simply multiply the 260/230 reading you get by the appropriate correction factor.

<table>
<thead>
<tr>
<th>uL DNA added to GTD</th>
<th>Correction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water</td>
</tr>
<tr>
<td>20</td>
<td>4.5</td>
</tr>
<tr>
<td>30</td>
<td>4.5</td>
</tr>
<tr>
<td>40</td>
<td>4.5</td>
</tr>
<tr>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>150</td>
<td>6</td>
</tr>
<tr>
<td>200</td>
<td>6.5</td>
</tr>
<tr>
<td>250</td>
<td>6.5</td>
</tr>
</tbody>
</table>